The Parameterless Self-Organizing Map Algorithm
نویسندگان
چکیده
منابع مشابه
Lifestyle patterns in the Iranian population: Self- organizing map application
Background: The present study evaluated the lifestyle behavior patterns and its associations with demographic factors in the Iranian population. Methods: A total of 8244 people aged 25-70 years who participated in a national survey in 2011 were included in the study. Factors related to lifestyle (such as diet, physical activity, and tobacco use) have been collected using a questionnaire. A sel...
متن کاملFast self-organizing feature map algorithm
We present an efficient approach to forming feature maps. The method involves three stages. In the first stage, we use the K-means algorithm to select N2 (i.e., the size of the feature map to be formed) cluster centers from a data set. Then a heuristic assignment strategy is employed to organize the N2 selected data points into an N x N neural array so as to form an initial feature map. If the ...
متن کاملSelf-organizing map algorithm and distortion measure
We study the statistical meaning of the minimization of distortion measure and the relation between the equilibrium points of the SOM algorithm and the minima of the distortion measure. If we assume that the observations and the map lie in a compact Euclidean space, we prove the strong consistency of the map which almost minimizes the empirical distortion. Moreover, after calculating the deriva...
متن کاملThe Time Adaptive Self Organizing Map for Distribution Estimation
The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...
متن کاملThe Self-organizing Map
information from multidimensional primary signals, and to represent it as a location, say, in a two-dimensional network. Although this i s already a step towards generalization and symbolism, it must be admitted that the extraction of features from geometrically or physically relatable data elements i s still a very concrete task, in principle at least. Theoperation of the brain at the higher l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks
سال: 2006
ISSN: 1045-9227
DOI: 10.1109/tnn.2006.871720